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Global equation of state of two-dimensional hard sphere systems
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Hard sphere systems in two dimensions are examined for arbitrary density. Simulation results are compared
to the theoretical predictions for both the low- and the high-density limit, where the system is either disordered
or ordered, respectively. The pressure in the system increases with the density, except for an intermediate range
of volume fractions 0.65r<0.75, where a disorder-order phase transition occurs. The prodsbdl
equation of statdwhich describes the pressui@r all densitie$ is applied to the situation of an extremely
dense hard sphere gas in a gravitational field and shows reasonable agreement with both experimental and
numerical data.
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A hard sphere(HS) system is a simple and tractable density isE/V. For low and intermediate densities< v,
model for various physical phenomena. It was used to examwith the “crystallization” density v, at which order be-
ine disorder-order transitions, the glass transition, or simpleomes importani the kinetic theory leads to an expression
gases and liquidsl—5] both theoretically and numerically. for the equation of state, i.e., the dimensionless excess pres-
The theory that describes the behavior of rather dilute hardure due to particle interactions,
sphere systems is the kinetic thed®3], in which particles
are assumed to be rigid and collisions take place in zero P:=pV/IE—1=2vg(v). 1)
time. An extension to Boltzmann’s low-density theory was
introduced by Enskog?2,3], taking into account excluded For an ideal gas with noninteracting particles, one has
volume effects and also momentum transport via collisionspV/E=1 so thatP=0; for nonzero densities, one h&s
In the limit of high densities, the cage effect, where particles>0 since the collisions contribute to the momentum trans-
are captured by their neighbds], becomes important and a port and thus to the pressure, the viscosity, the heat conduc-
free-volume theory can be formulat@,7]. There exists no tivity, and the dissipation rate. In cases witk 1, the factor
theory, to our knowledge, that is valid for the intermediate2 can be rep|aced by-ﬂ_r The pair correlation function at
densities where the system changes from the disordered intactg(») accounts for the probability that a collision oc-
the ordered state, however various theoretical approachegrs. Typically,g(v) is determined via a virial expansion
were proposed in recent decades; see R&S8-10 and  zround low densities and one can use
references therein.

When dissipation is added to the HS model, one has the 1-7v/16 3116
simplest version of a granular gas, i.e., the inelastic hard ga(v)= — , 2
sphere(IHS) model. Granular media represent the more gen- (1-v)? 8(1-n)*

eral class of dissipative, nonequilibrium, multiparticle sys-

tems[11,12. Attempts to describe granular media by meanswhere the subscript 4 indicates that the second term is of
of the kinetic theory are usually restricted to certain limitsorder 1/(1—»)*. The first term in Eq.(2) is the simpler,
such as small densities or weak dissipafi®8,14. Also in  frequently used versiorg,(v) introduced by Henderson
the case of granular media, one has to apply higher-ordgii3,20,2]. Note that the expression in E¢R) is slightly
corrections to successfully describe the system under mowgifferent from the form in Refs[14,21. The value ofg,,
general conditionfl5-18 or for multiparticle contactfl9].  taken at contact, accounts for the excluded volume effect and
The result of a kinetic theory approach is, in the simplesthe increase of the collision rate with density. At densities
case, a set of balance equations for mass, momentum, afgtger thanv.~0.7, an ordered triangular structure is evi-
energy with constitutive expressions for the transport coeffidenced 22—-24.

cients, describing stress, viscosity, heat conduction, and en- One of the unsolved problems concerning an application
ergy dissipation. In this Brief Report, we focus on the pres-of the balance equations to a specific boundary-value prob-
sure p, the isotropic part of the stress in a hard spherdem is the limited range of validity of Eq2). Under realistic
gas—or in a granular gas in its elastic limi>1—with the  conditions withr <1, the volume fraction can take values
coefficient of restitutiomr. The model system is periodic and > v [25] so that a solution based on E¢$) and(2) can be
two-dimensional2D) with volumeV=1,l,, wherel, andl,  correct up tov, only. This is even worse, since the “virial”
are horizontal and vertical size, respectively. It contaihs 1g(v) also occurs in all the other transport coefficients. For
particles with radiia, and masses that are located at posi- the same reason, fortunately, a generalization of the pressure
tions r; with velocitiesv;. The fraction of the area that is P to all densities will thus enter all the other transport coef-
covered by particles is denoted as volume fraction ficients. This is why we examine the equation of statalat
=Nma?/V. The kinetic energy isE=(m/2)2iN:1vi2, the  densitiesand propose global equation of stat¢hat is then
temperature is defined aB=E/N in 2D, and the energy tested by a comparison with simulation and experiment.
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For the numerical modeling of the system, an event-
driven (ED) method[25,26] is used. A change in velocity 100 — 1
can occur only at a collision when the standard interaction | .
model, based on momentum and energy conservation, is 10 F 4
used[12]. The postcollisional velocities’ of two collision Ry [
partners, in their center-of-mass reference frame, are given in 1f ol o
terms of the precollisional velocitias, by v; ,=v;,+[ (v o V°/. - .
—v,)-n]n, with the unit vectorn pointing along the line 0.1 ¢ 0.67 0.7 0.73 ]

connecting the centers of the colliding particles. This model
can also be extended to the more general case of dissipative
particles with rough surfacd42,13.

The stress tensor inside a test volumMéwvhose isotropic FIG. 1. Global, dimensionless equation of stage plotted
part is the pressurp) has two contributions, one from the against the volume fractiom with logarithmic vertical axis. The
convectional transport of mass and thus momentum and th#ashed and dotted lines correspondPtpand Pyense respectively,
other due to collisions and the related momentum transporgee Eqgs(1), (2), and(3). In the inset, simulation dataN(= 1628,
for details see Ref$23,25 and references therein. The meanr=1) are compared witkQ.
pressure is obtained from simulations with different volume

fractions v in the following. at the maximum packing fraction in 2D;00°= 7/(24/3).

The equation of state in the dense, ordered phase has bedte that one has to choose the system size such that a tri-
calculated by means of a free-volume thed,22,27, angular lattice fits perfectly in the system, id,/l,
which leads in 2D to the reduced pressiRge=cy/(Vmax = V3h/2w with integerw and everh, otherwise the maxi-
—v)—1, with c,~1.8137 as obtained from our numerical mum possible volume fraction can be smaller. Since our
data. Based on the simulation results, we propose the cosimulations are already set up on a perfect triangular lattice,

0 02 04 06 038

rected high-density pressure the maximum density is approached i6¢> v 4. If, instead,
c the volume fraction is increased by increasing the particle
Pdense:—oha( Vmas— V) — 1, (3)  size[24,26 and the simulations are started from random,
Vmax— V

low-density configurations;,,,« is not reached due to defects

in the 2D crysta[27,29. Thus our global equation of state

represents the high-density, small compression-rate limit.
The transition by itself is also interesting, since we obtain

ngat re(TaEnshtp rl:])eddon_e Is to merge th(_arlow-deknsnylpresé hysteresis loop when the density is increased and decreased
sureP, and the 'gn- ensity expressi¢8). To our NOWI-— with a finite rate[7,25,30. Especially in the transition re-
edge, no theory exists that connects these two limiting re-

) besid he M I B0l F ) gion, the relaxation time is very large, and the inflection in
gimes, besides the viaxwe con§truct|b - or varous - e data(see the inset in Fig.)Xkcan be due to either the finite
approaches concerning the melting and freezing transitio

"felaxation time, the finiteness of the system, or the initial and
see Rgfs[8,9,22,27,29,3p Therefore, we propose tgtobal boundary condition§30,31. Note that the analytical expres-
equation of state

sion Q allows for a straightforward numerical integration of

wherehs(x) is a fit polynomial[ 1+ ¢;x+ c3x%] of order 3,
with ¢;=—0.04 andc;=3.25[28].

Q=P,4+m(v)[ Pgense Pal, (4 the density profile(see below, since the fit parameters are
. N _ . chosen such that the slope @fis always positive. This is a
with an empirical merging function compromise between the quality of the fit on the one hand

and the numerical treatability of the function on the other
5) hand; instabilities are avoided but also memory effects are
disregarded.

For a HS system in a gravitational field with the accelera-
that selectsP, for v<w. and Pgense fOr v=>wv, with the  tion g in the negative vertical direction, both density and
width of the transitionm,. The parameters,=0.7006 and pressure gradient have to be taken into account. In the fol-
my=0.0111 lead to qualitative agreement betw&eand the  lowing, we compute analytically the density profile for an
simulation results, by far better than 1% for the purely or-ideal HS gas £<0.65); the profile for the extremely dense
dered and disordered regimes, and still within about 3% imgas is computed numerically using the global equation of
the interval 0.65 v<0.75[31]. state and is found to be in excellent agreement with the nu-

When plotting P against the volume fractiow with a  merical ED simulations, where a horizontal wallat 0 is
logarithmic vertical axis in Fig. 1, the results for the different introduced in a periodic, two-dimensional system of width
simulations cannot be distinguished from the theoretical prek =1,/(2a) and infinite height. The number density
diction P, for »=<0.65. For larger volume fractions, one ob- =n(z)=N/V is related to the volume fraction by
tains crystallization around.~0.70 and the data clearly de- = v(z)/(7a?). Here, we briefly sketch how to obtain an ana-
viate from P4. In the transition regime, the coexistence of lytical solution for the density profile, valid at least for low
fluid and solid phases can be obtained. The pressure &nd intermediate densiti¢$4,23,32.
strongly reduced due to the enhanced free volume in the Given the equilibrium of forces, the force Ldp due to
ordered phase. The reduced pressure data eventually divertfee pressure gradient at heightcompensates the weight

M) = T exd = (v— vo)img]
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Both the qualitative and the quantitative behavior of the den-

0.9 Eopmme sity profile are well reproduced by the numerical solution
0.8 using the global equation of state. All solutions belong to one
0.7 master curve and can be rescaled by a horizontal shift. The
0.6 averaging result is somewhat dependent on the averaging
> 05 procedure; we evidence strong coarse-graining effects in the
04 dense, ordered regime with densities>0.70. Using two
03 methods, one tailored for the ordered regime and the other
02 for the disordered regime, however, we obtain consistent re-
ol L4 | sults.
) b RN In summary, we tested existing predictions for the equa-
0 0 20 40 60 80 100 120 140 160 tion of state of a 2D hard sphere gas of arbitrary density via
Yo comparison with numerical simulations and experimental

data. In the dilute case, the particle correlation at contact and
FIG. 2. Volume fraction of the hard sphere gas as a function ofhe collision frequencyand thus the equation of statare
the rescaled heigl#/ z; for different vg values as given in the inset. nicely predicted by the kinetic theory expressions up to in-
Lines are the theoretical predictions with increasing bottom denSiterrmEdiate densities~0.65. In the dense case. the free vol-
from left to right, open symbols are two simulations, and the solidurne theory for 2D systems can be applied tc; systems with
dots are the experimental data from REH]. densities larger tham~0.75. Finally, a merging function is

nmgLdzof the particles in a layer with heighiz, so that the proposed, which connects the low- and high-density regimes,

differential equatiordp/dz=—nmghas to be solved. In the resulting in a differentiableylobal equation of statéor the

simplest case, the equation of state of an ideal dilutepgas 2P hard sphere gas for arbitrary density. .
=nT, separation of variables, and the assumption of a con- The equation of state is used to compute analytically and

stant temperature lead to an exponentially decreasing densifgimerically the density profile of an elastic, monodisperse
profile v(2)=vqexfd —(z—2)/z], with v<wg:=v(zy) and HS gasin agravitational field. For maximum densities below
Zr= T/(mg) In a closed System, the partic|e numbers Ve, the analytical solution works perfectly well. For hlgher
conserved so that integration pfover z determines the vol- densities, we used a numerical solverpPLE). The strange
ume fraction at the bottorvy=Nma?/(zrL) in the dilute shape of the density profile as obtained from simulations is
limit. nicely reproduced by our theory based on the global equation
In denser situations (@ »<0.65) the pressure can be ex- of state, including a wiggle at~ v.. We remark that the ED
pressed ap=nT[1+2vg,(v)] [we do not useg,(v) in simulation method parallels the Monte CafMC) method
order to keep the analysis simpland integration leads to an [30] concerning the particle-particle interactions, but in con-
implicit definition of »(2): trast to MC it allows for a definition of time and thus for the
examination of the dynamics.

z— 2, v 7 0 The presented results are obtained from homogeneous,
=In—-— gln 1= +2[gy(vg)—ga(v)]  (6) elastic systems of arbitrary density. The range of applicabil-
Zr v v ity, however, is much wider. Since already weak dissipation
can lead to strong inhomogeneities in density, temperature,
'and pressure, the global equation of state is a necessary tool
to treat effects such as clustering, surface waves, pattern for-
|y]'r]ation, or phase transition and coexistence by means of a
continuum theory. In a freely cooling “granular gas,” for
example, clustering leads #dl densities betweem~0 and
V= Vax [25].

The proposed global equation of state is based on a lim-
d amount of data from ED simulations. Initial checks of
whether our global equation of state still makes sense for
different particle-size distribution functions are promising,
however the crystallization effect vanishes for strong enough
constraint that the particle number is a constant. In Fig. 2, th ondlsperS|ty[23].. What remains to be done IS to find simi-

; . : . ar global expressions for other transport coefficients such as
volume fractionv is plotted against the rescaled height : . o

X . . : the viscosity and the heat conductivity, and, furthermore, to

for both theory and simulations. Simulation parameters arg tend the oresented approach to three-dimensional systems
N=1000, L=10, andz;/(2a)=5.85 (open circles or N '
=3000, L=50, andz;/(2a)=0.508 (open squaresIn ad- We acknowledge the support of the Deutsche Fors-
dition, we present experimental results from vibrated two-chungsgemeinschafDFG) and appreciate the helpful dis-
dimensional arrays of small spherf®4] (solid dot3, ne-  cussions with E. Ciment, J. Eggers, D. Hong, J. Jenkins, A.
glecting the fact that this situation is weakly dissipative.Santos, and O. Straul3.

1-v,

with the unknown volume fraction, atzy, again determined
by the integral over the density. This leads to a third-orde
polynomial for v, which can be solved analytically33],
and has at least one real solution. When the theoretical de
sity profile in Eq.(6) is compared with numerical simula-
tions, one obtains perfect agreement for 0.65[23]. Since
the functionsg,(v) andg,(v) are wrong at larger densities
v, one cannot expect that the pressure and the density profi,{ae
are correct.

Using the global equation of sta#®, from Eq.(4) instead
of 2vg,(v), one has to integrate the differential equation
dp/dz= —nmg numerically withp=nT(1+Q) under the
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