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Global equation of state of two-dimensional hard sphere systems
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Hard sphere systems in two dimensions are examined for arbitrary density. Simulation results are compared
to the theoretical predictions for both the low- and the high-density limit, where the system is either disordered
or ordered, respectively. The pressure in the system increases with the density, except for an intermediate range
of volume fractions 0.65<n<0.75, where a disorder-order phase transition occurs. The proposedglobal
equation of state~which describes the pressurefor all densities! is applied to the situation of an extremely
dense hard sphere gas in a gravitational field and shows reasonable agreement with both experimental and
numerical data.
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A hard sphere~HS! system is a simple and tractab
model for various physical phenomena. It was used to ex
ine disorder-order transitions, the glass transition, or sim
gases and liquids@1–5# both theoretically and numerically
The theory that describes the behavior of rather dilute h
sphere systems is the kinetic theory@2,3#, in which particles
are assumed to be rigid and collisions take place in z
time. An extension to Boltzmann’s low-density theory w
introduced by Enskog@2,3#, taking into account excluded
volume effects and also momentum transport via collisio
In the limit of high densities, the cage effect, where partic
are captured by their neighbors@5#, becomes important and
free-volume theory can be formulated@6,7#. There exists no
theory, to our knowledge, that is valid for the intermedia
densities where the system changes from the disordere
the ordered state, however various theoretical approa
were proposed in recent decades; see Refs.@5,8–10# and
references therein.

When dissipation is added to the HS model, one has
simplest version of a granular gas, i.e., the inelastic h
sphere~IHS! model. Granular media represent the more g
eral class of dissipative, nonequilibrium, multiparticle sy
tems@11,12#. Attempts to describe granular media by mea
of the kinetic theory are usually restricted to certain lim
such as small densities or weak dissipation@13,14#. Also in
the case of granular media, one has to apply higher-o
corrections to successfully describe the system under m
general conditions@15–18# or for multiparticle contacts@19#.
The result of a kinetic theory approach is, in the simpl
case, a set of balance equations for mass, momentum,
energy with constitutive expressions for the transport coe
cients, describing stress, viscosity, heat conduction, and
ergy dissipation. In this Brief Report, we focus on the pr
sure p, the isotropic part of the stress in a hard sph
gas—or in a granular gas in its elastic limitr→1—with the
coefficient of restitutionr. The model system is periodic an
two-dimensional~2D! with volumeV5 l xl y , wherel x andl y
are horizontal and vertical size, respectively. It containsN
particles with radiia, and massesm that are located at posi
tions r i with velocitiesv i . The fraction of the area that i
covered by particles is denoted as volume fractionn
5Npa2/V. The kinetic energy isE5(m/2)( i 51

N v i
2 , the

temperature is defined asT5E/N in 2D, and the energy
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density isE/V. For low and intermediate densitiesn,nc
~with the ‘‘crystallization’’ density nc at which order be-
comes important!, the kinetic theory leads to an expressio
for the equation of state, i.e., the dimensionless excess p
sure due to particle interactions,

PªpV/E2152ng~n!. ~1!

For an ideal gas with noninteracting particles, one h
pV/E51 so thatP50; for nonzero densities, one hasP
.0 since the collisions contribute to the momentum tra
port and thus to the pressure, the viscosity, the heat con
tivity, and the dissipation rate. In cases withr ,1, the factor
2 can be replaced by 11r . The pair correlation function a
contactg(n) accounts for the probability that a collision oc
curs. Typically,g(n) is determined via a virial expansio
around low densities and one can use

g4~n!5
127n/16

~12n!2
2

n3/16

8~12n!4
, ~2!

where the subscript 4 indicates that the second term is
order 1/(12n)4. The first term in Eq.~2! is the simpler,
frequently used versiong2(n) introduced by Henderson
@13,20,21#. Note that the expression in Eq.~2! is slightly
different from the form in Refs.@14,21#. The value ofg4,
taken at contact, accounts for the excluded volume effect
the increase of the collision rate with density. At densit
larger thannc'0.7, an ordered triangular structure is ev
denced@22–24#.

One of the unsolved problems concerning an applicat
of the balance equations to a specific boundary-value p
lem is the limited range of validity of Eq.~2!. Under realistic
conditions with r ,1, the volume fraction can take value
n.nc @25# so that a solution based on Eqs.~1! and~2! can be
correct up tonc only. This is even worse, since the ‘‘virial’
ng(n) also occurs in all the other transport coefficients. F
the same reason, fortunately, a generalization of the pres
P to all densities will thus enter all the other transport co
ficients. This is why we examine the equation of state atall
densitiesand propose aglobal equation of statethat is then
tested by a comparison with simulation and experiment.
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 042201
For the numerical modeling of the system, an eve
driven ~ED! method@25,26# is used. A change in velocity
can occur only at a collision when the standard interact
model, based on momentum and energy conservation
used@12#. The postcollisional velocitiesv8 of two collision
partners, in their center-of-mass reference frame, are give
terms of the precollisional velocitiesv, by v1,28 5v1,27@(v1

2v2)•n̂#n̂, with the unit vectorn̂ pointing along the line
connecting the centers of the colliding particles. This mo
can also be extended to the more general case of dissip
particles with rough surfaces@12,13#.

The stress tensor inside a test volumeV ~whose isotropic
part is the pressurep) has two contributions, one from th
convectional transport of mass and thus momentum and
other due to collisions and the related momentum transp
for details see Refs.@23,25# and references therein. The me
pressure is obtained from simulations with different volum
fractionsn in the following.

The equation of state in the dense, ordered phase has
calculated by means of a free-volume theory@6,22,27#,
which leads in 2D to the reduced pressurePfv5c0 /(nmax
2n)21, with c0'1.8137 as obtained from our numeric
data. Based on the simulation results, we propose the
rected high-density pressure

Pdense5
c0

nmax2n
h3~nmax2n!21, ~3!

whereh3(x) is a fit polynomial@11c1x1c3x3# of order 3,
with c1520.04 andc353.25 @28#.

What remains to be done is to merge the low-density p
sureP4 and the high-density expression~3!. To our knowl-
edge, no theory exists that connects these two limiting
gimes, besides the Maxwell construction@10#. For various
approaches concerning the melting and freezing transit
see Refs.@8,9,22,27,29,30#. Therefore, we propose theglobal
equation of state

Q5P41m~n!@Pdense2P4#, ~4!

with an empirical merging function

m~n!5
1

11exp@2~n2nc!/m0#
~5!

that selectsP4 for n!nc and Pdense for n@nc , with the
width of the transitionm0. The parametersnc50.7006 and
m050.0111 lead to qualitative agreement betweenQ and the
simulation results, by far better than 1% for the purely
dered and disordered regimes, and still within about 3%
the interval 0.65<n<0.75 @31#.

When plotting P against the volume fractionn with a
logarithmic vertical axis in Fig. 1, the results for the differe
simulations cannot be distinguished from the theoretical p
diction P4 for n&0.65. For larger volume fractions, one o
tains crystallization aroundnc'0.70 and the data clearly de
viate from P4. In the transition regime, the coexistence
fluid and solid phases can be obtained. The pressur
strongly reduced due to the enhanced free volume in
ordered phase. The reduced pressure data eventually div
04220
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at the maximum packing fraction in 2D,nmax
mono5p/(2A3).

Note that one has to choose the system size such that a
angular lattice fits perfectly in the system, i.e.,l y / l x

5A3h/2w with integerw and evenh, otherwise the maxi-
mum possible volume fraction can be smaller. Since
simulations are already set up on a perfect triangular latt
the maximum density is approached forn→nmax. If, instead,
the volume fraction is increased by increasing the part
size @24,26# and the simulations are started from rando
low-density configurations,nmax is not reached due to defec
in the 2D crystal@27,29#. Thus our global equation of stat
represents the high-density, small compression-rate limit

The transition by itself is also interesting, since we obta
a hysteresis loop when the density is increased and decre
with a finite rate@7,25,30#. Especially in the transition re
gion, the relaxation time is very large, and the inflection
the data~see the inset in Fig. 1! can be due to either the finit
relaxation time, the finiteness of the system, or the initial a
boundary conditions@30,31#. Note that the analytical expres
sion Q allows for a straightforward numerical integration
the density profile~see below!, since the fit parameters ar
chosen such that the slope ofQ is always positive. This is a
compromise between the quality of the fit on the one ha
and the numerical treatability of the function on the oth
hand; instabilities are avoided but also memory effects
disregarded.

For a HS system in a gravitational field with the accele
tion g in the negative vertical direction, both density an
pressure gradient have to be taken into account. In the
lowing, we compute analytically the density profile for a
ideal HS gas (n,0.65); the profile for the extremely dens
gas is computed numerically using the global equation
state and is found to be in excellent agreement with the
merical ED simulations, where a horizontal wall atz50 is
introduced in a periodic, two-dimensional system of wid
L5 l x /(2a) and infinite height. The number densityn
5n(z)5N/V is related to the volume fraction byn
5n(z)/(pa2). Here, we briefly sketch how to obtain an an
lytical solution for the density profile, valid at least for low
and intermediate densities@14,23,32#.

Given the equilibrium of forces, the force2Ldp due to
the pressure gradient at heightz compensates the weigh

FIG. 1. Global, dimensionless equation of stateQ, plotted
against the volume fractionn with logarithmic vertical axis. The
dashed and dotted lines correspond toP4 and Pdense, respectively,
see Eqs.~1!, ~2!, and ~3!. In the inset, simulation data (N51628,
r 51) are compared withQ.
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BRIEF REPORTS PHYSICAL REVIEW E 63 042201
nmgLdzof the particles in a layer with heightdz, so that the
differential equationdp/dz52nmg has to be solved. In the
simplest case, the equation of state of an ideal dilute gap
5nT, separation of variables, and the assumption of a c
stant temperature lead to an exponentially decreasing de
profile n(z)5nd exp@2(z2z0)/zT#, with n,ndªn(z0) and
zT5T/(mg). In a closed system, the particle numberN is
conserved so that integration ofn over z determines the vol-
ume fraction at the bottomnd5Npa2/(zTL) in the dilute
limit.

In denser situations (0,n,0.65) the pressure can be e
pressed asp5nT@112ng2(n)# @we do not useg4(n) in
order to keep the analysis simple#, and integration leads to a
implicit definition of n(z):

z2z0

zT
5 ln

n0

n
2

7

8
ln

12n0

12n
12@g2~n0!2g2~n!# ~6!

with the unknown volume fractionn0 at z0, again determined
by the integral over the density. This leads to a third-or
polynomial for n0, which can be solved analytically@33#,
and has at least one real solution. When the theoretical
sity profile in Eq. ~6! is compared with numerical simula
tions, one obtains perfect agreement forn,0.65 @23#. Since
the functionsg2(n) andg4(n) are wrong at larger densitie
n, one cannot expect that the pressure and the density pr
are correct.

Using the global equation of state,Q, from Eq.~4! instead
of 2ng2(n), one has to integrate the differential equati
dp/dz52nmg numerically with p5nT(11Q) under the
constraint that the particle number is a constant. In Fig. 2,
volume fractionn is plotted against the rescaled heightz/zT
for both theory and simulations. Simulation parameters
N51000, L510, andzT /(2a)55.85 ~open circles! or N
53000, L550, andzT /(2a)50.508 ~open squares!. In ad-
dition, we present experimental results from vibrated tw
dimensional arrays of small spheres@34# ~solid dots!, ne-
glecting the fact that this situation is weakly dissipativ

FIG. 2. Volume fraction of the hard sphere gas as a function
the rescaled heightz/zT for differentn0 values as given in the inse
Lines are the theoretical predictions with increasing bottom dens
from left to right, open symbols are two simulations, and the so
dots are the experimental data from Ref.@34#.
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Both the qualitative and the quantitative behavior of the d
sity profile are well reproduced by the numerical soluti
using the global equation of state. All solutions belong to o
master curve and can be rescaled by a horizontal shift.
averaging result is somewhat dependent on the avera
procedure; we evidence strong coarse-graining effects in
dense, ordered regime with densitiesn.0.70. Using two
methods, one tailored for the ordered regime and the o
for the disordered regime, however, we obtain consistent
sults.

In summary, we tested existing predictions for the eq
tion of state of a 2D hard sphere gas of arbitrary density
comparison with numerical simulations and experimen
data. In the dilute case, the particle correlation at contact
the collision frequency~and thus the equation of state! are
nicely predicted by the kinetic theory expressions up to
termediate densitiesn'0.65. In the dense case, the free vo
ume theory for 2D systems can be applied to systems w
densities larger thann'0.75. Finally, a merging function is
proposed, which connects the low- and high-density regim
resulting in a differentiableglobal equation of statefor the
2D hard sphere gas for arbitrary density.

The equation of state is used to compute analytically a
numerically the density profile of an elastic, monodispe
HS gas in a gravitational field. For maximum densities bel
nc , the analytical solution works perfectly well. For high
densities, we used a numerical solver~MAPLE!. The strange
shape of the density profile as obtained from simulations
nicely reproduced by our theory based on the global equa
of state, including a wiggle atn'nc . We remark that the ED
simulation method parallels the Monte Carlo~MC! method
@30# concerning the particle-particle interactions, but in co
trast to MC it allows for a definition of time and thus for th
examination of the dynamics.

The presented results are obtained from homogene
elastic systems of arbitrary density. The range of applica
ity, however, is much wider. Since already weak dissipat
can lead to strong inhomogeneities in density, temperat
and pressure, the global equation of state is a necessary
to treat effects such as clustering, surface waves, pattern
mation, or phase transition and coexistence by means
continuum theory. In a freely cooling ‘‘granular gas,’’ fo
example, clustering leads toall densities betweenn'0 and
n'nmax @25#.

The proposed global equation of state is based on a
ited amount of data from ED simulations. Initial checks
whether our global equation of state still makes sense
different particle-size distribution functions are promisin
however the crystallization effect vanishes for strong enou
polydispersity@23#. What remains to be done is to find sim
lar global expressions for other transport coefficients such
the viscosity and the heat conductivity, and, furthermore
extend the presented approach to three-dimensional syst

We acknowledge the support of the Deutsche Fo
chungsgemeinschaft~DFG! and appreciate the helpful dis
cussions with E. Cle´ment, J. Eggers, D. Hong, J. Jenkins,
Santos, and O. Strauß.
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